
TM

TimeSys Linux/RT
Version 1.0

User’s Manual

The Power of Real-Time in Pure Linux

TM

TimeSys Corporation
4516 Henry Street, Pittsburgh, Pennsylvania 15213 USA

Copyright 2000 by TimeSys Corporation (http://www.timesys.com).

TimeWiz and SuiteTime are registered trademarks of TimeSys Corporation.

TimeSys, TimeSys Linux/RT, TimeTrace, “Real-Time… Real Solutions”, the
TimeSys logo, the TimeSys Linux/RT mascot and the TimeSys Linux/RT
product logo are trademarks of TimeSys Corporation.

Linux is a registered trademark of Linus Torvalds.

Motif and UNIX are registered trademarks of The Open Group.

Windows is a registered trademark of Microsoft Corporation.

Red Hat is a registered trademark of Red Hat, Inc.

All other trademarks and copyrights referred to are the property of their re-
spective owners.

TimeSys Corporation makes no representations, express or implied, with re-
spect to this documentation or the software it describes, including (with no
limitation) any implied warranties of utility or fitness for any particular
purpose; all such warranties are explicitly disclaimed. Neither TimeSys
Corporation nor its distributors, nor its dealers shall be liable for any direct,
incidental, or consequential damages under any circumstances.

Copyright 2000 by TimeSys Corporation (http://www.timesys.com)

Portions of this manual related to RTAI are derived from the documentation
on RTAI, which is copyrighted by Paolo Mategazza (Copyright 1999 by
Paolo Mantegazza (mantegazza@aero.polimi.it)) and subject to all the limi-
tations and conditions expressed in that license. These portions are governed
by the GNU Lesser Public License.

Distribution of substantively modified versions of this document is prohib-
ited without the explicit permission of the copyright holder(s).

Distribution of the work or derivative of the work in any standard (paper)
book form for commercial purposes is prohibited unless prior permission is
obtained from the copyright holder(s).

Printed in the United States of America.

3

Table of Contents

TIMESYS LINUX/RT: AN INTRODUCTION.....................9

1.1 LINUX EXPLAINED ...9
1.1.1 A Brief History of Linux..10

1.2 INTRODUCTION TO TIMESYS LINUX/RT12
1.3 WHAT’S IN THIS BOOK ...12

1.3.1 Conventions Used in This Guide.............................13

INSTALLING TIMESYS LINUX/RT.................................15

2.1 INSTALLING WITH DEBIAN ...15
2.2 INSTALLING WITH DISTRIBUTIONS OTHER THAN DEBIAN LINUX

...16
2.3 POST-INSTALLATION PROCESS.......................................16

OVERVIEW OF THE SYSTEM ...18

3.1 INTRODUCTION TO MODULES ..18
3.3 OVERVIEW OF TIMESYS LINUX/RT................................21

3.3.1 Predictable Real-Time Performance Within Pure Linux
..21
3.3.2 The TimeSys Linux/RT Architecture........................23
3.3.3 Target Application Domains, Components, and Tools27

3.4 OVERVIEW OF RESOURCE KERNEL (RK)........................28
3.4.1 Linux/RK Capabilities ..28
3.4.2 Introduction to Resource Kernels............................29
3.4.3 Reserves and Resource Sets31
3.4.3 Implementation Features ..35

3.5 OVERVIEW OF RTAI ..36
3.6 TIMESYS TOOLS AND SERVICES.....................................40

3.6.1 TimeWiz®: Modeling, Analysis, & Simulation40
3.6.2 TimeTraceTM: Visualization and Profiling...............42

3.7 FOR MORE INFORMATION..43

RUNNING REAL-TIME PROGRAMS...............................45

4

4.1 USING LINUX/RK USER PROGRAMS 45
4.1.1 Benefits of Linux/RK .. 45
4.1.2 Linux/RK Utilities .. 46
4.1.3 The “rolling” Demo Utility.................................... 47
4.1.4 The TimeSys Resource Manager Tool..................... 51
4.1.5 Other TimeSys Utilities and Demos........................ 54

4.2 USING RTAI USER PROGRAMS...................................... 55

PROGRAMMING WITH TIMESYS LINUX/RT.............. 57

5.1 PROGRAMMING IN LINUX/RK.. 57
5.1.1 Building Linux/RK programs 57
5.1.2 Linux/RK Capabilities.. 57
5.1.3 Resource Sets and CPU Reservations..................... 59
5.1.4 Priority Inheritance Support................................... 62
5.1.5 High-Resolution Clocks and Timers....................... 62
5.1.6 Periodic Real-Time Threads................................... 63
5.1.7 Physical Memory Management............................... 64

5.2 PROGRAMMING IN RTAI ... 64

APPENDIX: LINUX AND TIMESYS LINUX/RT COMMANDS
... 67

A. 1 LINUX COMMANDS.. 67
A. 2 TIMESYS LINUX/RT RK COMMANDS.......................... 71

GLOSSARY.. 73

INDEX .. 83

5

Table of Figures
FIGURE 1: THE TIMESYS LINUX/RT MASCOT “ TAMING” TIME. 21
FIGURE 3: THE RTAI CONFIGURATION OF TIMESYS LINUX/RT 26
FIGURE 4: RESOURCE KERNEL (RK) ARCHITECTURE........................... 31
FIGURE 5: THE “RESERVATION” PARAMETERS. 33
FIGURE 6: A SCREEN-SHOT OF TIMEWIZ®, A MODELING ANALYSIS AND

SIMULATION TOOL TO PREDICT AND PROVE THE TIMING BEHAVIOR

OF YOUR REAL-TIME SYSTEM. .. 41
FIGURE 7: A SCREEN-SHOT OF TIMETRACETM TO MONITOR, VISUALIZE,

AND PROFILE THE EXECUTION OF TIMESYS LINUX/RT THREADS. . 42
FIGURE 8: SCREEN SHOT OF “ ROLLING” DEMO UTILITY........................ 48
FIGURE 9: TRM SCREEN SHOT SHOWING CREATION OF RESOURCE SET 51
FIGURE 10:MODE SETTINGS FOR THE RESOURCE MANAGER................ 52
FIGURE 11:ATTACHING PROCESSES TO A RESOURCE SET...................... 53
FIGURE 12: MODIFYING THE CPU TIME OF A RESOURCE SET 54

7

Acknowledgements
TimeSys would like to acknowledge the contributions of the
following:

Members of the Real-Time and Multimedia Systems Labora-
tory at Carnegie Mellon University including Prof. Raj Ra-
jkumar, Dr. Shui Oikawa, Akihiko Miyoshi, and Dionisio de
Niz.

Members of the RED Linux project at the University of Cali-
fornia at Irvine, including Prof. Kwei-Jay Lin and Yu-Chung
Wang.

Members of the RTAI project at DIAPM in Italy. RTAI con-
tributors include Paolo Mantegazza and his research group
at DIAPM, Steve Papacharalambous of Zentropix, and Pi-
erre Cloutier of Poseidon Controls, and

Of course, the Linux open-source community.

9

Chapter 1:

TimeSys Linux/RT: An Introduction

Welcome to TimeSys Linux/RT!

In this book, you’ll find everything you need to get started
with TimeSys Linux/RT, from instructions in how to set
your system up and navigate it to information about the
wide variety of applications available to you under Linux.
But first this chapter seeks to answer two very important
questions: What exactly is Linux, and what’s so special
about TimeSys Linux/RT?

1.1 Linux Explained

Linux is a free operating system modeled after UNIX — one
of the oldest, most reliable, and most widely used operating
systems in the world.

Linux offers you the benefits of full multitasking, TCP/IP
networking, the X-Windows system, and almost any other
capability you'd expect from a computer system. With Li-
nux, the oldest personal computer can become a powerful
workstation. Programmers everywhere, from the corporate
world to academia, have found Linux to be the right oper-
ating system for their needs.

Yet the most distinctive aspect of Linux is the fact that it's
free. This means, of course, that you can download Linux

TimeSys Linux/RT User’s Guide

10

installation software and continue to get upgrades without
laying out any money whatsoever.

But it also means that the source code behind the system is
available to everyone. Linux is an exemplar of the open
source philosophy, which gives every user the potential to
become a developer — to play around with the source code,
to fix bugs, to extend what the system can do. Anyone with
a knowledge of programming basics and a desire to get
“down and dirty” can join the community of Linux pro-
grammers.

The ease of adding to Linux helped TimeSys in designing
TimeSys Linux/RT. Instead of having to layer real-time
software above Linux, TimeSys Linux/RT was able to give
the kernel itself — the core of any Linux system — the ca-
pacity to handle real-time applications. Thus, TimeSys Li-
nux/RT combines the functionality of a real-time operating
system with the stability and reliability of Linux.

1.1.1 A Brief History of Linux

Once upon a time, a young University of Helsinki student
named Linus Torvalds got it into his head to create a UNIX-
like operating system. At this point (1991), UNIX — which
made its debut at AT&T in 1969 and became popular
through its support of multitasking and file sharing — had
spawned a lookalike called Minix.

Torvalds had played around with Minix, but decided to
take on the challenge of developing a completely new oper-
ating system — one that would hopefully be “a better Minix
than Minix.”

By October 1991, Torvalds had gotten a rudimentary OS
working. While it was far from fully functional, he could
run bash (the GNU Bourne Again Shell), gcc (the GNU C
compiler), and a few other assorted programs.

Chapter 1: Introduction

11

On October 5, he announced the availability of Linux ver-
sion 0.02 (0.01 had never been officially released) on
comp.os.minix. In that post, he wrote:

Do you pine for the nice days of Minix 1.1,
when men were men and wrote their own device
drivers? Are you without a nice project and
just dying to cut your teeth on a OS you can
try to modify for your needs? Are you finding
it frustrating when everything works on
Minix? No more all-nighters to get a nifty
program working? Then this post might be just
for you.
As I mentioned a month ago, I’m working on a
free version of a Minix-lookalike for AT-386
computers. It has finally reached the stages
where it’s even usable (though may not be de-
pending on what you want), and I am willing
to put out the sources for wider distribu-
tion. It’s just version 0.02 \ldots{} but
I’ve successfully run bash, gcc, GNU make,
GNU sed, compress, etc. under it.

By March 1992, Linux was up to version 0.95 (i.e., very,
very close to an official release). After another two years of
revision, the Linux kernel was finally at version 1.0, mean-
ing that it was theoretically devoid of all bugs. As of this
writing, Linux has reached version 2.2.

The increasing popularity of Linux has given rise to soft-
ware packages that cut down on the time and hassle associ-
ated with getting started. These packages, called distribu-
tions, gather into one place everything a user needs to in-
stall Linux on his or her computer. The current TimeSys Li-
nux/RT distribution is based on Debian, one of the most
common — not to mention well-respected — distributions
around. Debian has been making itself available since 1993
and is currently on version 2.1. However, as mentioned
earlier, TimeSys Linux/RT can be used with any other
popular Linux distribution as well by appropriately replac-
ing the Linux kernel in the distribution with the TimeSys
Linux/RT distribution.

TimeSys Linux/RT User’s Guide

12

To refresh your Linux memory, we’ve included some of the
most commonly used commands in an appendix to this
manual.

1.2 Introduction to TimeSys Linux/RT

TimeSys Linux/RT, as mentioned above, differs from other
real-time Linux systems in that the kernel itself is modified
to handle real-time applications. This means that, among
other things, if a single real-time process crashes, the other
processes and the kernel will continue safely along as if
nothing happened. This stability represents a big improve-
ment over other real-time variants, which were likely to
bring the whole system down whenever one process
crashed.

TimeSys Linux/RT has its base in the Linux resource kernel,
or Linux/RK, developed at Carnegie Mellon University. Li-
nux/RK is included in Linux/RT as a module that's called
up whenever necessary. TimeSys Linux/RT has inserted
code in the Linux kernel proper so that, every time some-
thing having to do with real time needs to be done, the ker-
nel goes to Linux/RK for instructions on how to handle it.
Thus, the real-time capability is there when it's needed but
doesn't interfere with the rest of Linux when the user is
doing something else.

To make TimeSys Linux/RT as convenient as possible to
people who may need to use other pre-existing systems, the
distribution includes, along with Linux/RK, RTAI (Real-
Time Applications Interface) from DIAPM in Italy and RED
Linux from the University of California at Irvine.

1.3 What’s in This Book

Here in the User’s Guide, you can learn pretty much every-
thing you need to know to get TimeSys Linux/RT installed
and working on your computer. What there is to know
about Linux as a whole could fill a book a thousand times

Chapter 1: Introduction

13

this size, but this particular manual sticks to Linux basics
and features specific to TimeSys Linux/RT. (If you’re look-
ing for more detailed information about particular aspects
of Linux, there should be something for you somewhere in
the vast world of Linux guidebooks.) Subjects covered in-
clude:

• Installing TimeSys Linux/RT (Chapter 2)

• Overview of the System (Chapter 3)

• Running Real-Time Programs (Chapter 4)

• Programming with TimeSys Linux/RT (Chapter 5)

 More in-depth information about programming with Time-
Sys Linux/RT can be found in the Programmer’s Manual.

 1.3.1 Conventions Used in This Guide

• bold highlights important words (i.e. do not try to in-
stall Linux unless you have hours of time to spare)

• italic is used for unfamiliar words the first time they’re
encountered in the text (i.e. module) or when discussing
a generic class of data (i.e. variable1)

• courier is used for input to or output from programs,
including names of programs, program code, com-
mands, and files (i.e. type ls -l foo at the prompt)

• bold courier represents input the user has typed in
verbatim

• italic courier is used to name a generic class of data
that appears in a particular input or output (i.e. ifdef
variable-name, with variable-name of course being
replaced by the actual name of the variable whenever
it’s entered by a user).

15

 Chapter 2:

 Installing TimeSys Linux/RT

 Installing TimeSys Linux/RT is only as hard as performing
a Debian installation and inserting some modules. TimeSys
Linux/RT can also be used with other distributions includ-
ing RedHat, Suse, and Mandrake. This is because TimeSys
Linux/RT consists of changes and extensions to the Linux
core kernel, which is the same in most Linux distributions.

2.1 Installing with Debian

 Here is what you need to do to install TimeSys Linux/RT.

 First you need to perform a Debian Linux installation, be-
cause that is the distribution that TimeSys Linux/RT is cur-
rently using. If you have no existing Linux installation on
the target system, then make sure your BIOS is configured
to boot from the CD-ROM, and reboot with this CD-ROM
in the drive. If you cannot boot from a CD-ROM, then you
will need to create a boot floppy using the
/debian/dists/potato/main/disks-
i386/current/images-1.44/rescue.bin image. You can
do this from DOS using the rawrite program in the
/debian/tools directory, or from another Linux system by
copying the image to /dev/fd0.

TimeSys Linux/RT User’s Guide

16

 If you need more help installing Debian’s Linux distribu-
tion, please refer to their website, www.debian.org. Here you
can find online manuals that will walk you through the in-
stallation.

 If the target system already has Debian installed, you can
install the packages in the
/debian/dists/potato/local/binary-i386 directory
using dpkg.

2.2 Installing With Distributions other than Debian Linux

 As mentioned earlier, Linux/RT can also be used with other
distributions including RedHat, Suse, and Mandrake.

 If the target system has a Linux distribution installed which
is not based on Debian, run the /timesys/install script
from within the /timesys directory.

2.3 Post-Installation Process

 Now that you successfully installed the kernel, you are
ready to use the real-time implementations. There are two
different implementations, but only one can be used at a
time. These two implementations are RK (“Resource Ker-
nel”) and RTAI (“Real-Time Applications Interface”). They
are implemented as kernel modules so they must be in-
serted when you want to use them. For information about
kernel modules, please read the modules chapter. By de-
fault the RK module is loaded at boot time, so if you want
to use the RK implementation, you can use it without doing
anything. The following explains what you need to do to
run TimeSys Linux/RT without real-time capabilities, how
to load the real-time capabilities, and how to switch be-
tween RK and RTAI.

 Here are the various ways you can run TimeSys Linux/RT
and how to do it:

 Chapter 2: Installing TimeSys Linux/RT

17

 NOTE: You must have superuser privileges to do these opera-
tions.

 If you want to run TimeSys Linux/RT without either real-
time implementation:

 All you have to do is remove the RK kernel module.

 # rmmod rk
 If you want to switch from one real-time implementation to
the other:

 You will call the rttype script which has one argument, the
module you would like to switch to.

 # rttype rk
 // if you are using rtai, but want to switch
to rk\
 # rttype rtai
 // if you are using rk, but want to switch to
rtai

 Of course, you can manually insert and remove the modules
using the insmod and rmmod commands. If you want to list
all of the modules that are loaded on the system, use the
lsmod command.

 If you want to use the TimeTrace tool:

 You must insert the module named measure-rk or measure-
rtai

 # insmod measure-rk
or

 # insmod measure-rtai

 NOTE: RK and RTAI modules cannot be inserted at the same
time.

18

 Chapter 3:

 Overview of the System

 3.1 Introduction to Modules

 As mentioned in the last chapter, the guts of TimeSys Li-
nux/RT reside in a module — a chunk of code that can be
inserted into the kernel for added functionality. This section
explores the concept of modules in a little more detail and
explains how to actually use them.

 Modules often take the form of device drivers — code
which lets the kernel communicate with a specific periph-
eral device such as a keyboard or CD-ROM drive. But, like
TimeSys Linux/RT, they can also be used to extend the sys-
tem in ways that don't have anything to do with any spe-
cific device.

 To get a handle on what a module is, it helps to understand
what a module is not — namely, an application. There are
several important differences between a module and an ap-
plication.

 The first important difference is that, while an application is
designed to perform and complete a particular task when-
ever it's called up, a module will register itself with the ker-
nel on first run so that the kernel knows which functions it
can evoke later on. So, since the ``main'' function of a mod-

Chapter 3: Overview of the System

19

ule serves to initialize it rather than do any actual task, the
terminology is a little different from that of your average,
everyday program. The traditional main() function be-
comes init_module(). Also, every module must end with
a cleanup_module function, which tells the kernel when the
module is finished.

 Second, a module has less flexibility than an application in
calling functions. As you know, an application can access
the functions found in any library provided it includes that
library in its header files.

 A module, on the other hand, can only be linked to the ker-
nel and so can only use functions defined in the kernel or
found in the module itself. One result of this is that a mod-
ule has no need of standard header files.

 To load a module, use the command:

 insmod <object_file>

 insmod comes with a number of flags and options:

 -f Attempts to load the module even

if the version of the kernel cur-
rently running and the version for
which the module was compiled
do not match.

 -k. Auto-clean; removes modules that
haven’t been used in some period
of time, usually one minute

 -m Outputs a load map, making it
easier to debug the module in the
event of a kernel panic.

 -o mod-
ule_name

 Explicitly name the module, rather
than deriving the name from the
base name of the source object file.

 -p Probe the module to see if it could

TimeSys Linux/RT User’s Guide

20

be successfully loaded. This in-
cludes locating the object file in
the module path, checking version
numbers, and resolving symbols.

 -s Output everything to syslog in-
stead of the terminal.

 -v Be verbose.

 To unload a module, type:

 rmmod module_name

 rmmod also supports a few flags:

 -a Remove all unused modules.

 -s Output everything to syslog in-
stead of the terminal.

Chapter 3: Overview of the System

21

 3.3 Overview of TimeSys Linux/RT

 Figure 1: The TimeSys Linux/RT mascot “taming” time.

 TimeSys Linux/RT’s mascot, shown in Figure 1, is Tux, the
Linux penguin riding a clock bullfighter-style. This image
neatly symbolizes our goal — to give you the tools to
“tame” time as effortlessly as a good bullfighter can tame a
bull.

3.3.1 Predictable Real-Time Performance Within Pure Linux

TimeSys Linux/RT extends the Linux kernel, rather than
adding a proprietary non-Linux RTOS as an abstraction
layer between Linux and the system hardware. By enhanc-
ing the actual operating system, engineers can build hard
real-time systems with TimeSys Linux/RT, while also en-
joying the reliability and stability that have become the
hallmark characteristics of the Linux OS.

The TimeSys Linux/RT architecture ensures that if a single
real-time process crashes, the rest of the processes, as well
as the kernel, will still run. This solves a major problem as-
sociated with the alternative, in which the entire Linux op-
erating system could fail if a single process crashes. None-
theless, TimeSys Linux/RT also offers engineers the ability
to incorporate a layer called RTAI (Real-Time Applications
Interface), which furnishes high performance and small sys-
tem footprint characteristics.

TimeSys Linux/RT User’s Guide

22

TimeSys Linux/RT offers the best of both worlds. With
TimeSys Linux/RT, developers can build real-time systems
based upon the RTAI layer, emphasizing speed and small
footprint for fully tested applications. And of course, you
can also use TimeSys Linux/RT as a “true-blue” and pure
real-time Linux OS, with all of Linux’ robustness and reli-
ability.

TimeSys supports TimeSys Linux/RT by offering a com-
plete spectrum of fully interoperable software products,
training, customization, consulting, and application engi-
neering services that support all phases of software devel-
opment for real-time systems. These include:

� SuiteTime – A complete set of support tools from
TimeSys, including TimeWiz, TimeTrace, and others
currently under development.

� TimeWiz is a tool for timing analysis, simulation
and modeling of single processor and distributed
real-time systems including custom network proto-
cols. It uses the popular rate-monotonic analysis
(RMA) methodology for building predictable real-
time systems, and can be readily customized and
extended for other schemes as well.

� TimeTrace measures and displays the exact execu-
tion sequence within a real-time target and can also
provide the execution time data necessary for tim-
ing analysis by TimeWiz.

� a real-time Java Virtual Machine – TimeSys will release
a real-time Java Virtual Machine that will run on top of
TimeSys Linux/RT, and will comply with Sun Micro-
systems' Real-Time Java Specification. TimeSys is a
member of Sun’s Real-Time Java Experts Group
(RTJEG), the body that is creating the specification.

Chapter 3: Overview of the System

23

3.3.2 The TimeSys Linux/RT Architecture

TimeSys Corporation has incorporated a critical set of
components into its Linux/RT offering that, together, offer
a highly innovative approach to meeting time constraints.
These components can be combined in some critical ways to
handle a wide variety of application requirements. The ba-
sic components of TimeSys Linux/RT are:

� Current Linux Components

� Resource Kernel (RK)

� RED Linux (RED)

� Real-Time Applications Interface (RTAI)

Next, let us look at each component individually and what
combinations can be created to meet response time re-
quirements.

TimeSys Linux/RT User’s Guide

24

Figure 2: Resource Kernel (RK) configuration of TimeSys
Linux/RT

RESOURCE KERNEL

The Resource Kernel (RK) shown in Figure 2 is a Linux
Loadable Kernel Module (LKM) that takes over some of the
most critical real-time functions of the operating system to
provide critical support for meeting bounded time con-
straints. For example, it supports Fixed-Priority Scheduling
with 256 priority levels. These can be used to directly sup-
port the highly predictable Rate Monotonic Analysis tech-
niques.

A unique capability of the RK is its support for a Temporal
Firewall. This capability allows an application to reserve
CPU capacity (soon disk and network capacity) that can be

Hardware

Resource
Kernel

Linux
Kernel

Linux
Process

Linux
Proc-
ess

Linux
Process

RED
Mgr

RED
Hooks

Kernel

User-Level

LKM

LLKKMM

Chapter 3: Overview of the System

25

guaranteed to remain available to the application, even if it
or another high-priority application component goes out of
control and attempts to monopolize the CPU.

In addition, RK supports core OS features required to build
real-time systems:

� priority inheritance to minimize problems of priority
inversion,

� high-resolution clock and timers,

� first-class support for periodic threads, and

� fine-grained control over which processes run after
their reservations expire.

With available support for pinning down of memory pages
of real-time processes, predictable and deterministic execu-
tion of Linux processes can be accomplished.

RED LINUX

TimeSys Linux/RT includes RED Linux support for system
event logging and user event logging will be included. As-
sociated with this will be special “hooks” needed to fully
support TimeSys’ innovative TimeTraceTM tool that sup-
ports fine-grained visualization of system-level and user-
level events. Task execution times and statistics get dis-
played automatically.

TimeSys Linux/RT User’s Guide

26

 Figure 3: The RTAI configuration of TimeSys Linux/RT

RTAI (Real-Time Applications Interface)

The RTAI (Real-Time Applications Interface) kernel con-
figuration shown in Figure 3 provides a compact, extremely
high-performance open-source executive that operates di-
rectly on the underlying hardware, allowing the remainder
of the Linux/RT components to get processor control when
the RTAI kernel or its high performance applications do not
need it.

RTAI provides fixed-priority scheduling, message queues,
and synchronization. RTAI should be used for well-tested
applications, because “crashes” of RTAI applications will
cause the entire system including the Linux kernel to
“crash” also. When RTAI applications interface with system
devices, specialized device drivers, separate from the Linux
device drivers, will be necessary.

Hardware

User-Level

RTAI

Linux
Kernel

Linux
Process

Kernel

LKM
RTAI
Task

Linux
Process

RTAI
Task

Chapter 3: Overview of the System

27

RTAI will soon be able to run stand-alone (i.e., without Li-
nux) as an open source kernel for applications requiring
high performance and a very small memory footprint.

COMBINATIONS OF TIMESYS LINUX/RT
COMPONENTS

Although RTAI is designed to operate with Linux, its appli-
cations remain separate from the Linux environment. This is
good from the performance perspective, but it means that
its support for meeting bounded time constraints is not ex-
tended to Linux applications. Thus, RTAI cannot be used in
combination with the RK or the RED Linux components.

LOADABLE KERNEL MODULES

TimeSys Linux/RT makes important advantage of Linux
loadable kernel modules (LKMs) for all of its components.
This allows the application to position itself among a wide
range of memory footprints. LKMs are object modules that
can be loaded (inserted) into or removed from the kernel at
run-time. From the application’s point of view, the system
calls made available by these modules are indistinguish-
able from the system calls in the kernel itself, since the
modules are run in system (as opposed to user) mode.

3.3.3 Target Application Domains, Components, and Tools

TimeSys Linux/RT is aimed at a host of embedded and
real-time applications in domains including telecommunica-
tions, process control, industrial automation, Internet appli-
ances, Web servers, multimedia servers, set-top boxes, high-
definition TVs, medical electronics, avionics, and defense
systems.

The TimeSys Linux/RT distribution supports and extends
several innovations from the real-time Linux research com-
munity:

� Linux/RK (resource kernel) from Carnegie Mellon Uni-
versity.

TimeSys Linux/RT User’s Guide

28

� RTAI (Real-Time Applications Interface) from DIAPM
in Italy.

� RED Linux from the University of California at Irvine.

TimeSys Linux/RT comes with effective tools and expert
support to leverage the benefits of the open-source Linux
operating system in the context of building real-time sys-
tems.

3.4 Overview of Resource Kernel (RK)

We now provide an overview of the most important subsys-
tem inside TimeSys Linux/RT, called Linux/RK where RK
stands for “Resource Kernel”.

3.4.1 Linux/RK Capabilities

The Linux/RK subsystem of TimeSys Linux/RT provides
the following capabilities:

� Fixed-priority scheduling with 256 priority levels: You
can use the standard POSIX-compliant calls to assign a
priority to any Linux process.

� Priority inheritance to avoid unbounded priority inver-
sion: Timing problems from potentially unbounded pri-
ority inversion can be eliminated by the use of priority
inheritance protocols using the Real-Time POSIX
threads library and kernel support provided by Time-
Sys Linux/RT. The APIs used by TimeSys are the same
as POSIX in this regard.

� Quality of Service (QoS) support for Resource Reserva-
tion: TimeSys Linux/RT, through the Linux/RK mod-
ule, provides direct support to deliver guaranteed
Quality of Service (QoS) to your real-time applications.
An application can explicitly request and obtain CPU
and timing guarantees.

Chapter 3: Overview of the System

29

� High-Resolution Clocks and Timers: Linux/RK sup-
ports high-resolution clocks and timers. Resolutions of a
few microseconds or better are available.

� Periodic Real-Time Tasks: Periodic execution of tasks
is a common requirement in real-time systems. TimeSys
Linux/RT allows Linux processes to be marked as peri-
odic processes, in which case they will be executed in
periodic fashion.

� Memory Wiring: The physical memory pages of a real-
time process can be “locked” by Linux so that they are
not swapped out by the paging system. Otherwise, the
predictability of real-time processes can suffer signifi-
cantly.

 3.4.2 Introduction to Resource Kernels

 TimeSys Linux/RT has its roots in the resource kernel (RK)
work done by Prof. Raj Rajkumar and his research group at
the Real-time and Multimedia Systems Laboratory at
Carnegie Mellon University in Pittsburgh. Behind the mod-
ule that enables TimeSys Linux/RT to handle real-time re-
quests lie the concepts of the “resource kernel”. A resource
kernel is one which provides timely, guaranteed, and en-
forced access to system resources to applications. It allows
applications to specify only their resource demands, leaving
the kernel to satisfy those demands using hidden resource
management schemes. This separation of resource specifica-
tion from resource management allows OS-subsystem-
specific customization by extending, optimizing, or even re-
placing resource management schemes. As a result, this re-
source-centric approach can be implemented with any of
several different resource management schemes.

 The resource kernel gets its name from its resource-centricity
and its ability to:

• apply a uniform resource model for dynamic sharing of
different resource types

TimeSys Linux/RT User’s Guide

30

• take resource usage specifications from applications

• guarantee resource allocations at admission time

• schedule contending activities on a resource based on a
well-defined scheme

• ensure timeliness by dynamically monitoring and en-
forcing actual resource usage

 A main function of an operating system kernel is to multi-
plex available system resources across multiple requests
from several applications. The traditional non-real-time
kernel allocates a time-multiplexed resource to an applica-
tion based on fairness metrics during a certain period. With
a resource kernel, an application can request the reservation
of a certain amount of a resource, and the kernel can guar-
antee that the requested amount is available to the applica-
tion. Such a guarantee of resource allocation gives an appli-
cation specific knowledge of the amount of its currently
available resources. A QoS manager or an application itself
can then optimize the system behavior by computing the
best QoS obtained from the available resources.

 The original resource kernel project aimed to create a
‘‘Portable Resource Kernel,’’ one which could be adapted
relatively painlessly to work with a variety of operating sys-
tems. The Real-time and Multimedia Systems Lab chose Li-
nux as a basis for the first implementation of a resource
kernel in part because of its popularity on a wide variety of
platforms and the easy availability of its source code.

 In order to ensure maximum portability, the system was de-
signed to explicitly avoid making extensive modifications to
the original Linux kernel, and TimeSys has followed this
precedent. Thus, the real-time code was developed as an
independent module, modifying the Linux kernel only to in-
troduce several callback hooks that catch relevant schedul-
ing points in the Linux kernel and send these events to the
RK. The resource kernel module uses the well-defined func-
tions in the Linux kernel to control kernel entities, such as
processes and device drivers.

Chapter 3: Overview of the System

31

 TimeSysLinux/RT has inserted the following types of call-
back hooks in the Linux kernel:

• schedule callback hook: within schedule(), the
scheduling function of the Linux kernel

• interrupt callback hook: intercepts Linux interrupt
handling

• interrupt out callback hook: used to notify the resource
kernel when an interrupt has finished being processed

• kernel out callback hook: used to notify the resource
kernel when the execution is returning from kernel
mode to the user level

 3.4.3 Reserves and Resource Sets

 Figure 4: Resource Kernel (RK) Architecture

 The primary abstractions behind the resource kernel are the
resource capacity reservations (reserves in short) and the re-
source set. The relationship between a resource set and re-

CPU DiskNetwork

Resource Set1 Resource Set2 Resource Set3

Process1

Process2

Process3 Process5

Process6Process4

Rsv CPU,1 Rsv CPU,2 Rsv CPU,3

Scheduler CPU Scheduler Net Scheduler Disk

Rsv Net,1 Rsv Net,2

Rsv Disk,1 Rsv Disk,2

TimeSys Linux/RT User’s Guide

32

serves is illustrated in the Figure 4. While the Linux kernel
provides normal operation system functions, the resource
kernel uses reserves and resource sets — along with the
necessary mechanisms for admission control, resource
scheduling, resource usage accounting, and enforcement —
to augment these functions.

 A reserve represents a share of a single computing resource.
Such a resource can be CPU time, physical memory pages, a
network bandwidth, or a disk bandwidth. A certain amount
of a resource is reserved for use by the programs. A reserve
is implemented as a kernel entity; thus, it cannot be counter-
feited. The kernel keeps track of the use of a reserve and
will enforce its utilization when necessary. Appropriate
scheduling and enforcement of a reserve by the resource
kernel guarantees that the reserved amount is always allo-
cated for it.

 A reserve can by time-multiplexed or dedicated. Temporal
reserves like CPU cycles, network bandwidth, and disk
bandwidth are time-multiplexed, and spatial resources like
memory pages are dedicated. A time-multiplexed resource
has the following primary reserve parameters: T, C, and D,
where T represents a recurrence period, C represents the
processing time required within T, and D is the deadline
within which the C units of processing time must be avail-
able within T. These parameters1 are illustrated in Figure 5.2

1 TimeSys Linux/RT also uses a “B” parameter in the specification of
CPU reserves. It is used to represent priority inversion conditions, if
any. This parameter can be normally set to zero.
2 As of Release 1.0, TimeSys Linux/RT only supports the primary re-
source, CPU reserves. Support for network bandwidth reservation and
disk bandwidth reservation will be added in the future.

T T

C C CD D

Chapter 3: Overview of the System

33

 Figure 5: The “Reservation” Parameters.

 A resource set represents a set of reserves. A resource set is
bound to one or more programs, and provides the exclusive
use of its reserved amount of resources with those pro-
grams. A resource set groups necessary resources for the
job of user applications; thus, it is easy to examine and
compare the utilization of each resource in it. If the kernel
or a QoS manager finds an imbalance in resource utilization,
an application will be notified and will be able to change its
QoS parameters in order to balance the utilization.

 When a reserve uses up its allocated time units C within an
interval T, it is said to be depleted. A reserve which is not
depleted is said to be an undepleted reserve. At the end of
the current interval T, the reserve will obtain a new quota
and is said to be replenished. In our resource management
model, the behavior of a reserve between depletion and re-
plenishment can take one of three forms:

• Hard reserves: will not be scheduled on depletion until
they are replenished.

• Firm reserves: scheduled for execution on depletion
only if no other un-depleted reserve or unreserved re-
source uses can be scheduled.

• Soft reserves: can be scheduled for execution on deple-
tion along with other unreserved resource use and de-
pleted reservations.

 Reserves contain certain amounts of resources and control
their utilization. A reserve may represent one of many dif-
ferent types of resources such as CPU cycles and network
bandwidth. Different types of resources have their own ac-
counting information and their own ways to deal with re-
source management. At the same time, reserves need to
provide a uniform interface; otherwise, modifications are
required each time a new resource type is added. Therefore,
a reserve is de-coupled into abstract and real reserves. An
abstract reserve implements the functionality common
across all reserves and provides a uniform interface. A real

TimeSys Linux/RT User’s Guide

34

reserve implements resource-type-specific portions and ex-
ports functions that adhere to the uniform resource man-
agement interface. Abstract and real reserves are always
paired. When a reserve is created, each of them is created
and is coupled with each other. The distinction is useful be-
cause it requires only that real reserves be implemented for
a new resource type.

 Real reserves implement the following mechanisms which
guarantee resource utilization based on reservation.

• Admission control: TimeSys Linux/RT performs an
admission control test on a new request to determine if
it can be accepted or not. If the request can be admitted,
a reserve based on the requested parameters is created.

• Scheduling policy: A scheduling policy controls dy-
namic resource allocation, so that an application can re-
ceive its reserved amount of a resource.

• Enforcement: TimeSys Linux/RT enforces the use of a
resource by an application based on its allocated re-
serves. An enforcement mechanism prevents a resource
from being used more than its reserved amount.

• Accounting: TimeSys Linux/RT tracks how much of a
resource an application has already used. This informa-
tion is used by the scheduling policy and the enforce-
ment mechanism. An application, a QoS manager, or a
real-time visualization tool can also query this informa-
tion for observation and/or dynamic resource allocation
control purposes.

Reserves are gathered into a ‘‘container’’ called a resource
set, which provides a well-defined resource environment for
applications. An execution object, a “process” in the Linux
kernel, can be bound to at most a single resource set. Even
when an execution object uses only a single reserve, it has to
create a resource set and attach its only reserve to the set.

A resource set greatly simplifies the mechanism by which
the current active reserve can be determined at run time. A

Chapter 3: Overview of the System

35

process also contains a reference to its resource set, and the
resource set holds the references to its attached reserves.

3.4.3 Implementation Features

One important characteristic of the TimeSys Linux/RT im-
plementation is its accurate time management. The combi-
nation of a timestamp counter with a high-resolution timer
contributes to improving the precision of resource man-
agement.

A timestamp counter, built into most modern CPUs, pro-
vides the standard time for use by the resource kernel. The
representation of time that the RK uses in accounting and
scheduling is based on the values from this timestamp
counter.

A high-resolution timer is supported to make the enforce-
ment of reserves more precise. It is implemented by using
the one-shot mode of the ISA clock timer chip in PC-
compatible systems. The RK sets the latch for the next inter-
rupt every time after a timer interrupt occurs.

In TimeSys Linux/RT, the interrupt callback hook calls the
ISR (Interrupt Service Routine) in the resource kernel and
processes timer interrupts. Interrupts are propagated to the
Linux kernel as needed to ensure Linux compatibility.

The Linux kernel supports the proc filesystem, which pro-
vides, in a portable way, information on the current status
of Linux kernel and running processes.

TimeSys Linux/RT uses the proc filesystem for providing
information on the hardware platform, the reservation
status, and the status of resource sets and reserves. Informa-
tion on reserves includes the current, minimum, and maxi-
mum utilization of their underlying resources.

TimeSys Linux/RT User’s Guide

36

 3.5 Overview of RTAI

 One of the first important attempts to introduce real-time
capabilities to Linux via modules came out of the depart-
ment of aerospace engineering at Milan Polytechnic. Pro-
grammers there needed an operating system with a periodic
scheduler in order to enhance efficiency in control applica-
tions that could work with a basic period and integer multi-
ples of it.

 They started out trying to develop a Real-Time Hardware
Abstraction Layer (RT-HAL) onto which a Real-Time Ap-
plication Interface (RTAI) could be mounted to make Linux
usable for hard real-time applications. Unfortunately, kernel
2.0.25, the original basis for this project, was too unclean in
design for the idea they had in mind. Thus, they switched
gears and began to modify a kernel that NMT had intro-
duced called RTLinux.

 The initial release of RTLinux had had no real-time support
functions (i.e. semaphore, timing functions, messages, etc.),
which had made it impractical to implement relatively
complex control applications requiring a few cooperating
tasks and which meant that the Milan programmers had
their work cut out for them.

 They found that future versions of real-time Linux would
require one-shot precise heterogeneous timers to implement
PWM control systems at medium frequencies that, if done
within the RTLinux tasks, would have allowed much more
flexibility than a hard-wired implementation.

 Again, however, the original release maintained its architec-
ture and its overhead remained excessive. So the Milan
programmers implemented the oneshot timers in a different
way by using the CPU TSC (Time Stamp Clock), which was
much more efficient but, with earlier-than-Pentium ma-
chines and compatibles, no more usable.

 Another important reason for a variant was the fact it met
the demand for a bug-free FPU support — a feature that, for

Chapter 3: Overview of the System

37

some time, had been lacking in the official release. Eventu-
ally, the official RTLinux solved most of these problems and
added a periodic timer, along with semaphores and mail-
boxes. However, the programmers in Milan still thought the
oneshot timing lacked efficiency.

 When Linux kernel 2.2.xx made its debut, appearing to have
a cleaner interface to the hardware, the Milan group went
back to its original idea of developing an abstraction layer
and an interface — but with a somewhat deeper under-
standing of what was behind it. The result was a compre-
hensive Real-Time Application Interface, usable both for
uniprocessors (UP) and for symmetric multi processors
(SMP), that allows the use of Linux kernel 2.2.xx for many
hard real-time applications.

 SMP tasks are defaulted to work on any cpu, but you can
assign them to any subset, or even to a single cpu, by
using the function rt_set_runnable_on_cpus. It is also
possible to assign any real-time interrupt service to a
specific cpu by using rt_assign_irq_to_cpu and
rt_reset_irq_to_sym_mode.

 Thus, a user can statically optimize his/her application if
he/she believes that it can be better done than by using a
symmetric load distribution. The possibility of forcing any
interrupts to a specific cpu is clearly not related to the
smpscheduler and can be used also with interrupt handlers
alone.

 Note that only the real-time interrupt handling is forced to a
specific CPU. That means that if you check this feature by
using cat /proc/interrupts for a real-time interrupt that is
chained to Linux (e.g. the timer when rtl_sched is in-
stalled), you can still see some interrupts distributed to all
the CPUs, even if they are mostly on the assigned one. That
is because Linux interrupts are kept symmetric by the RTAI
dispatcher of Linux irqs.

 The schedulers allow you to choose between a periodic and
a one-shot timer, not to be used together. The periodic
ticking is less flexible but, with the usual PC hardware,

TimeSys Linux/RT User’s Guide

38

much more efficient. So it is up to you to choose the appro-
priate one for the applications at hand.

 It should be noted that in the one-shot mode the time is
measured on the base of the CPU time stamp clock (TSC)
and not on the 8254 chip, which is used only to generate
one-shot interrupts. The periodic mode is instead timed by
the 8254 chip only. In this way, slow I/Os to the ISA bus are
limited as much as possible with a sizeable gain in effi-
ciency. The oneshot mode has just about 15-20% more over-
head than the periodic one. It is likely that local APIC timers
could lead to a further improvement.

 Right now, local APIC timers are hard-disabled on UPs and
a preliminary experience with a single SMP local APIC
timer, to be released soon for SMP, shows that there is no
performance improvement for a periodic scheduling when
the one-shot case gain is sizeable, but not so large with re-
spect to the already-available solution. In fact, by using the
TSC, just two outb (approximately 2.5 us) are required to
reprogram the 8254, as compared to almost nothing for the
APIC timer. However, you have to broadcast a message to
all the CPUs in any case, and that is about 2 us. The APIC
bus is an open drain 2 wired one, and is not lightning-quick.
Note that the performance loss of the 8254 is just a fraction
of the overall task switching procedure, which is always
substantially heavier in the one-shot case than in periodic
mode.

 Since the TSC is not available on 486 machines, these sys-
tems use a form of emulation of the ‘‘read time stamp
clock’’ (rdtsc) assembler instruction based on counter2 of the
8254. So you can use RTAI also on such machines. Be
warned that the one-shot timer on a 486 is a performance
overkill because of the need to read the tsc, i.e. 8254 coun-
ter2 in this case, twice. That can take 6-8 us, i.e. more than it
takes for a full switch among many tasks while using a pe-
riodic timer. Thus, only a very short period of a few Khz is
viable for real-time tasks if you want to keep Linux alive.

Chapter 3: Overview of the System

39

 No similar problems exist for the periodic timer that need
not use any TSC at all. So, compared to the 20% cited above,
the real-time performance ratio of the one-shot/periodic
timer efficiency ratio can be very low on 486 machines.
Moreover, it will produce far worse jitters than those
caused on Pentiums and upward machines. If you really
need a one-shot timer, buy a Pentium, at least. But if you
care mainly about periodic timing, 486s can be still more
than adequate for many applications.

 A feature of the RTAI implementation is that interrupt han-
dlers preambles take care natively of the task switched (TS)
flag. Thus, you can freely use floating-point operations in
your interrupt handlers, without causing a trap-fault what-
ever thing Linux is doing. RTAI is thus very suitable for
trapping interrupts without taking Linux into account so
that you can effectively interact with the bare PC hardware.

 With RTAI you have the added advantage that Linux main-
tains all of its features untouched so that you can pass to it
whatever you get from your handler for logging, display-
ing, and post-processing, by using FIFOs and/or shared
memory. Imagine a remote controller at 10 Khz, +-5 us av-
erage interrupt uncertainty, connected through the internet,
with all the bells and whistles of X and its applications. It is
an application that was simulated easily.

 Note that RTAI also has some very useful system services,
including: timings, semaphores, messages, and remote pro-
cedure calls (RPC). These features make it easier to develop
complex real-time applications.

 RPCs are a limited form of QNX messages that pass either
just an unsigned integer or a pointer to an unsigned integer
for reason of efficiency. They can be easily changed to be
fully compatible with QNX if you’d like.

TimeSys Linux/RT User’s Guide

40

3.6 TimeSys Tools and Services

TimeSys provides a complete set of solutions for users of
TimeSys Linux/RT including a set of friendly tools for en-
hanced productivity, a (future) offering of a Real-Time Java
virtual machine and a complete set of services including
training, customization, consulting and turn-key project de-
velopment services.

3.6.1 TimeWiz®: Modeling, Analysis, & Simulation

TimeWiz® is a product from TimeSys Corporation specifi-
cally designed for the construction of simple or complex
real-time systems with predictable timing behavior. A
screen-shot of TimeWiz is presented in Figure 6. TimeWiz
lets you

� represent your hardware and software configurations,

� analyze the worst-case timing behavior of your system,

� simulate its average-case timing behavior,

Chapter 3: Overview of the System

41

 Figure 6: A screen-shot of TimeWiz®, a modeling analysis
and simulation tool to predict and prove the timing be-
havior of your real-time system.

� model processors and networks for end-to-end per-
formance,

� chart your system parameters and generate integrated
system reports.

TimeWiz currently runs on Windows NT and Windows
2000 platforms, and can also be run on Windows emulation
platforms such as VMWare on Linux.

For more information, please contact TimeSys
(www.timesys.com).

TimeSys Linux/RT User’s Guide

42

3.6.2 TimeTraceTM: Visualization and Profiling

TimeTraceTM is a product from TimeSys Corporation that
allows the monitoring and visualization of your real-time
applications running on TimeSys Linux/RT. You can view
scheduling, context-switching, system calls and user events
as and when they happen. You can also obtain worst-case
execution times, average execution times, and period in-
formation of your tasks. These can be used readily to ana-
lyze your system’s timing behavior using tools such as
TimeWiz.

� Profile your TimeSys Linux/RT target in real-time.

� Capture execution sequence on targets efficiently.

 Figure 7: A screen-shot of TimeTraceTM to monitor, visual-
ize, and profile the execution of TimeSys Linux/RT

threads.

� Display target execution sequences visually to create a
“software oscilloscope”

Chapter 3: Overview of the System

43

� Monitor multiple TimeSys Linux/RT targets simultane-
ously from a single workstation (needs TimeTrace for
TimeSys Linux/RT, Professional Edition).

� Feed TimeTrace data into TimeWiz as execution time
and period parameters for worst-case analysis and/or
average-case simulation.

TimeTrace for TimeSys Linux/RT is available in two edi-
tions:

� The Standard Edition of TimeTrace is part of the Time-
Sys Linux/RT Professional Edition.

� The Professional Edition of TimeTrace allows you to
monitor multiple TimeSys Linux/RT targets from a sin-
gle host.

TimeTrace runs on Windows NT and Windows 2000 plat-
forms, and on Windows emulation software such as
VMWare.

3.7 For More Information

For more information about TimeWiz, TimeTrace, Real-
Time Java and other services including consulting, training,
customization and turn-key project development, please
contact TimeSys Corporation. Contact information can be
found at www.timesys.com.

44

45

Chapter 4:

Running Real-Time Programs

4.1 Using Linux/RK User Programs

4.1.1 Benefits of Linux/RK

Linux/RK is an extension to the core Linux kernel. As a re-
sult, the RK subsystem of TimeSys Linux/RT supports a
powerful array of capabilities:

1. Real Real-Time Linux applications: Any Linux process
can now become a real-time process. You are no longer
constrained to choose between a real-time OS and Li-
nux; you do not have to embed a thin real-time OS layer
below the Linux kernel; you just use Linux processes as
is and imbibe them with real-time capabilities as you
wish. It’s that simple.

2. POSIX support for your real-time needs: TimeSys Li-
nux/RT provides complete support for the traditional
real-time systems paradigm of using a fixed-priority
preemptive scheduling policy. In fact, it supports 256
priority levels. It also supports priority inheritance on
mutexes to avoid the unbounded priority inversion
problem. You can use standard Real-Time POSIX inter-
faces to access these functions.

3. QoS Delivery: TimeSys Linux/RT provides direct and
explicit support for QoS delivery to your real-time ap-

TimeSys Linux/RT User’s Guide

46

plications. A discussion of this capability was provided
in Chapter 3.

4. Real-Time Support for Legacy Applications: A pleas-
ant surprise is that you can take existing legacy applica-
tions running on Linux and endow them with QoS
guarantees, providing a Linux process with a guaran-
teed 30% of the processor, for example. You can actu-
ally specify whether you want this process to receive
3ms every 30 ms of time, or 300ms every 3 seconds.

4.1.2 Linux/RK Utilities

Linux/RK provides a wide-ranging API (applications pro-
gramming interface) to allow real-time applications to ac-
cess its internal capabilities. This API is summarized briefly
in Chapter 5 and described in detail in the TimeSys Li-
nux/RT Programmer’s Manual.

In addition, Linux/RK provides a group of utilities: in Li-
nuxRK/bin. These utilities include the following:

� rklist: lists the current resource sets in the system and
their parameters.

� rkdestroy: allows to destroy a resource set (whose id
specified using the hexadecimal format).

� RKcleanRS: a shell script that destroys all resource sets
and their reserves in the processor.

� rkattach: allows you to attach a process (specifying its
pid) to an existing resource set. Remember to specify
the resource set id using the hexadecimal format. You
can attach any Linux process using this utility, even if
the process was written without any knowledge of RK.

� rkdetach: allows you to detach a process (specified by
its pid) from an existing resource set.

� rkexec: allows you to create a new resource set with
CPU reservation parameters, and attach a new process
to the resource set. Again, this allows any legacy proc-

Chapter 4: Using Linux/RK User Programs

47

ess (written without any knowledge of TimeSys Li-
nux/RT) to be able to use and benefit from the QoS
guarantees provided by TimeSys Linux/RT.

� clockfreq: allows you to retrieve the processor clock
frequency at which the CPU is running.

Any utility that needs parameters can be invoked without
specifying any parameters and a “help” message specifying
the required syntax will be printed out.

The source code for all these utilities are provided in the
TimeSys Linux/RT distribution. The code also serves to
provide very good examples of how to use and benefit from
RK abstractions and primitives.

4.1.3 The “rolling” Demo Ut ility

PURPOSE

This program was designed to demonstrate how to create
cpu resource sets and attach them to a process. All six balls
are controlled by identical threads, with the exception that
cpu resource sets are attached to processes controlling the
blue balls.

TimeSys Linux/RT User’s Guide

48

 Figure 8: Screen-shot of the “rolling” demo utility

MAKING AND MODIFYING

This application is based on the GTK API. This directory
should include gtkpiechart.c, gtkpiechart.h, proc-
ess.c, process.h, and rolling.c. gtkpiechart is a cus-
tom widget for drawing piecharts. Running make should be
all that is needed to create rolling.

RUNNING THE ROLLING DEMO

“rolling” needs two arguments.

The first argument is the number of milliseconds each real
time ball will be given in computation time. The next num-
ber is the reservation period in nanoseconds.

Chapter 4: Using Linux/RK User Programs

49

RUNNING THE PROGRAM

Clicking the START button starts the ball rolling. The first
set of balls both have resource sets attached to their process.
The next line has one with a resource set. The last line con-
sists of two regular processes.

The process is a simple loop that increments the x value of
the ball, and makes checks to see if it has hit a side or the
other ball.

The routine of creating the resource set, attaching it to a
process, and creating the cpu reserve is detailed in the ter-
minal in which the program was run.

The number of taps (hits) between paired balls is noted by
the counter above the pair on the line.

The period and amount of cpu reservation can be controlled
by entering values into the edit boxes and hitting the button.
If the request is valid (i.e. the computation times of the three
real time balls are within 70% usage of the specified period),
the piechart gives a graphical depiction of the percentage of
the time that the threads have exclusive use of the CPU
during each period versus the rest of the system’s processes
(including the regular balls).

The HARD/SOFT button changes the reservation type of
the real-time threads. The button’s label is the current res-
ervation type being used.

WHAT YOU SHOULD NOTICE

The top row should increase its number of taps rapidly,
even at small reservation percentages. The next row should
also do the same, since all three blue balls have (at even
small computation times) plenty of time to update their x
position.

The blue balls look like they’re disappearing and reappear-
ing elsewhere. This effect also stems from the fact that these
balls have ample opportunity to update their x position.

TimeSys Linux/RT User’s Guide

50

You might notice that the middle row increases its taps the
same, or more rapidly than the top row. Why? The logic for
counting the taps is located in the update_screen() event
in rolling.c. The top two balls are updating their x posi-
tions so rapidly, they often miss each other entirely as far
as update_screen() is concerned. The green ball, on the
other hand, does not have such a rapid update and can al-
ways tell when its blue ball is smacking against it. You’ll
see that at high computation times, this poor ball hardly
gets to move. TimeSys Linux/RT had not anticipated this
happening, but it is interesting nonetheless.

Play around with the computation times and the reservation
periods. Keep the period over 20ms, however, since the x
server has a tendency to freeze with shorter periods.
(Maybe 1 out of a hundred times, but you’ve been warned.
If this happens, telnet into the machine and kill the rolling
process.

EXPERIMENT

Try the program with both HARD and SOFT to get a feel
for how the processes react with the different scheduling
priorities.

Try to reserve more time than is possible at the command
line and you'll notice that not every thread gets a resource
set. While running the program, increase the computation
time until over 50% is allocated to the first three threads.
You’ll notice that everything else pauses for half of the pe-
riod since they have to wait for the first three threads to be
done with the cpu.

With low reservation periods and small computation times,
the balls should slip across the screen rapidly, easily out-
pacing the other three balls. This shows the power of RT-- a
small user program can easily control the usage of the CPU
with just a few commands.

Chapter 4: Using Linux/RK User Programs

51

4.1.4 The TimeSys Resource Manager Tool

The TimeSys Resource Manager (TRM) is a tool for manag-
ing the resource sets in a system running the Resource Ker-
nel. It allows you to create, rename, and delete resource
sets, attach and detach processes from resource sets, and
modify the mode, period, and cpu time of a resource set.

 Figure 9: TRM screen-shot showing creation of resource
set

Figure 9 shows a screenshot of TRM. A resource set has
been created and renamed to "My Resource Set". Resource
sets are created by selecting "Add Resource Set" from the
menu near the top of the screen. A different resource set can
be selecting by choosing it from the menu. Resource sets are
listed by their identifier (a hexadecimal string) and their
name. Existing resource sets can then be renamed by type a
new name in the name field and hitting return. The cur-

TimeSys Linux/RT User’s Guide

52

rently selected resource set can be deleted by clicking on the
"Delete" button.

 Figure 10: Mode settings for the Resource Manager

The mode of a cpu reservation can be set to Hard, Firm, or
Soft. If the mode of a reservation is set to Hard, then the
processes attached to the reservation will get exactly as
much cpu time as they have been allotted. If the mode of a
reservation is set to Soft, then processes will be able to get
more time than they have been allotted if there is not much
activity on the processor.

Chapter 4: Using Linux/RK User Programs

53

 Figure 11: Attaching processes to a resource set

Processes can be attached to a resource set by typing their
process ID into the "Process ID:" field, and then clicking the
"Attach" button. If the process ID is valid, then the process
will appear in the list, along with the name of the process.
To detach a process from a resource set, simply click on the
process you wish you detach, and then click the "Detach"
button.

TimeSys Linux/RT User’s Guide

54

 Figure 12: Modifying the CPU time of a resource set

The cpu time of a resource set can be modified by entering a
new period into the "Period:" field, and hitting return. The
cpu time can be adjusted by moving the slider in the lower
right corner of the window.

There are also "Refresh" and "Exit" buttons. The refresh but-
ton refreshes the information on the screen. This is only
necessary when the resource sets are being modified by
other processes on the system. The exit button will exit
TRM.

4.1.5 Other TimeSys Utilities and Demos

We recommend that you, the gentle reader, access the
TimeSys Web site at www.timesys.com on a regular basis for
downloading other utilities and demonstration code that
are constantly being created. For example, a video-

Chapter 4: Using Linux/RK User Programs

55

conferencing application that runs on TimeSys Linux/RT
will be available in the 2Q 2000 from TimeSys.

4.2 Using RTAI User Programs

The following is a general description of how to run user
programs. For a more detailed description and a walk-
through of this process, please read the chapter program in
the Programmer’s Guide on creating and executing an
RTAI.

Before running a user program, the core RTAI modules
need to be inserted. These core modules are the actual real-
time implementation of Linux. Without inserting these
modules, all that you are running is Linux without real-
time. The files ldmod and remod can be used to insmod and
rmmod all of the core modules at once: rtai, fifo, and the
installed scheduler module with the default parameters. For
the scheduler, the modules are: the CPU frequency, as set in
the corresponding macro CPU_FREQ in rtai.h; a periodic
scheduler and Linux assumed not to use the FPU. You can
change any of the above parameters by either setting the
corresponding macros in "rtai.h" or typing the following
command when installing the module:

insmod
/usr/src/linux/modules/rtai_sched CpuFreq=<x>
LinuxFpu=<y> OneShot=<z>

x is the CPU frequency in Hz. If y == 0, Linux does
not use the fpu but if y ! = 0 it does. If z == 0, it uses a
periodic timer but, if z != 0, it uses the oneshot timer.
Clearly, you can set any combination of the above
parameters. The CPU frequency can be changed just
by compiling the scheduler modules, or the
functions: rt_linux_use_fpu(int yes_no),
rt_set_periodic_mode(), rt_set_oneshot_mode(),
can be used during installation to set/reset the sched-
uler dynamically. Note that any setting of the timer
mode stops any timer currently running.

TimeSys Linux/RT User’s Guide

56

After finishing this, try to run some user programs. Some
test cases are available in the /usr/src/rtai/examples di-
rectory. All the examples have some macros that allow you
to experiment with forcing tasks and timer interrupts to any
CPU and a summary of CPU usage is printed at module
removal.

Be careful in setting the macro TICK_PERIOD (nanosecs) in
the various examples to a value appropriate to your ma-
chine. The defaults work for a 200Mhz PPro and can be too
demanding for lower-class Pentiums and 486s. In any case,
read the appropriate README file before running the cor-
responding examples. In all the tests, the choice of which
timer, periodic or one-shot, to use is done by comment-
ing/uncommenting the macro ONE_SHOT. It is important to
remark that, since in all tests a one-shot timer is set specifi-
cally at module load time, any choice made at the scheduler
installation is overridden.

It should also be noted that, if the timer mode is chosen at
module installation, it must be done by adding a call to
rt_set_[oneshot/periodic]_mode() before any time
conversion or service is requested by the scheduler. Thus, in
the case of a multi-module application set, the mode in the
very first module should be loaded or put in a common
header file, as is done in the digital wrist clock examples
(see file clock.h in directories sem_clock and msg_clock).
In the directory jitter_free_sw there is an example that
shows how, by loosing computer power, you can get an al-
most jitter-free scheduling.

Note that the examples related to the use of the MUP
scheduler are in the directory mups_examples. The RTAI
directory includes html files that document the various
function calls (in doc_rtai) and even more recent informa-
tion is included in the various README files. You can also
read the TimeSys Programmer’s Guide for further informa-
tion.

57

Chapter 5:

Programming With TimeSys Linux/RT

5.1 Programming in Linux/RK

A brief description of the APIs added to the Pure Linux
kernel by TimeSys Linux/RT follows.

5.1.1 Building Linux/RK programs

To compile a program for RK, please link to the library
librk.a located under "LinuxRT/lib" (or /usr/lib/rk
depending on your installation).

The macro __RK__ must be defined in each of your program
source files and is typically defined in your Makefile to
build your TimeSys Linux/RT programs.

5.1.2 Linux/RK Capabilities

The Linux/RK subsystem of TimeSys Linux/RT provides
the following capabilities:

Fixed-priority scheduling with 256 priority levels: You can
use the standard POSIX-compliant calls to assign a priority
to any Linux process.

TimeSys Linux/RT User’s Guide

58

Priority inheritance to avoid unbounded priority inversion:
When you use mutexes with the POSIX threads library, un-
bounded priority inversion can occur. To understand this
concept better, the reader may want to obtain an article ti-
tled “What Happened on Mars?” from TimeSys, and their
“Pocket Bible” on real-rime systems called “A Concise
Handbook on Real-Time Systems”. As the name implies, un-
controlled priority inversion can be unhealthy to your sys-
tem’s ability to meet its timing constraints.3

Quality of Service (QoS) support for Resource Reservation:
Linux/RK provides direct support to manage QoS delivery
to your real-time applications. An application can explicitly
request and obtain CPU and timing guarantees. This is ac-
complished through the use of “Resource Sets” and “CPU
Reservations “. A more detailed overview of the Resource
Kernel (RK) and its support for QoS delivery is available in
Chapter 3.

High-Resolution Clocks and Timers: Linux/RK supports
high-resolution clocks and timers on Pentium-class proces-
sors and beyond. Resolutions of a few microseconds or bet-
ter are available.

Periodic Real-Time Tasks: Periodic execution of tasks is a
common requirement in real-time systems. For example,
video processing and sound processing are typically done
periodically in multimedia systems. Periodic sampling of
sensor signals is very common in feedback control systems.
Linux/RK allows Linux processes to be marked as periodic
processes, in which case, they will be executed in periodic
fashion.

Memory Wiring: Real-time processes can suffer adverse
timing consequences if their memory pages are swapped to
disk during execution. (Linux, by default, uses demand-
paging of processes). The physical memory pages of a real-
time process can be “locked” by Linux so that they are not
swapped out by the paging system.

3 You must link your programs to the TimeSys Linux/RT library
“libpthreadsrt.a” to obtain support for priority inheritance.

Chapter 5: Programming With TimeSys Linux/RT

59

We next provide additional details and a brief description
of the application programming interfaces available to use
each of the above capabilities.

5.1.3 Resource Sets and CPU Reservations

For more information about the Resource Kernel paradigm,
please see the paper on Portable Resource Kernels and Re-
source Kernels.

To use CPU reservations, the following steps are necessary:

1. Create resource set.

2. Create CPU reservation for the resource set.

3. Attach a process to the resource set.

4. <program execution>

5. Destroy resource set.

You must include <rk/rk.h> to get these function proto-
types and link with "librk.a" in your application programs.

� rk_resource_set_t rk_resource_set_create(char
*name)

Creates a resource set with a name.

� rk_resource_set_destroy(rk_resource_set_t rs)

Destroys resource set rs.

� rk_resource_set_attach_process(rk_resource_se
t_t rs, pid_t pid)

Attaches the specified process to a resource set which
must already exist.

� rk_resource_set_detach_process(rk_resource_se
t_t rs, pid_t pid)

Detaches the specified process from a resource set.

� rk_resource_set_get_name(rk_resource_set_t
rs, char *name);

Returns the name of the specified resource set.

TimeSys Linux/RT User’s Guide

60

� rk_reserve_t
rk_resource_set_get_cpu_rsv(rk_resource_set_t
rs);

Returns the CPU reserve (if any) attached to a resource
set.

� rk_reserve_t rk_proc_get_resource_set(pid_t
pid);

Returns the resource set (if any) attached to a proc-
ess.

� rk_resource_sets_get_num(void);

Returns the number of resource sets currently in the
system.

� rk_resource_sets_get_list(rk_resource_set_
t *rs, int count);

Returns the list of resource sets in the system.

� rk_resource_set_t rk_proc_get_rset(pid_t
pid)

Returns the resource set to which the process speci-
fied by pid is attached to.

� rk_resource_set_get_num_procs(rk_resource_
set_t rs)

Returns the number of processes attached to a re-
source set.

� rk_resource_set_get_proclist(rk_resource_s
et_t rs, pid_t *procs);

Returns the list of processes attached to a resource
set.

� rk_reserve_t
rk_cpu_reserve_create(rk_resource_set_t
rs, cpu_reserve_attr_t attr);

Creates a CPU reservation and attaches to resource
set rs. The amount of CPU reservation is specified
with struct cpu_reserve_attr (defined in <rk/rk.h>).
It permits the definition of computation time (C),
period (T), deadline (D), blocking time (B, typically
0), and enforcement mode (hard, or soft).

Chapter 5: Programming With TimeSys Linux/RT

61

Currently, TimeSys Linux/RT supports RSV_HARD
and RSV_SOFT.

- RSV_HARD: guaranteed to receive the specified
amount on success

- RSV_SOFT: guaranteed to receive the specified
amount on success. If resource is still available
after using up guaranteed amount, it will com-
pete against unreserved tasks for more CPU
time.

� cpu_reserve_ctl(rk_resource_set_t rs,
cpu_reserve_attr_t cpu_attr)

Changes the properties of existing CPU reservations (com-
putation time, period, deadline, blocking time and enforce-
ment mode.)

� rk_cpu_reserve_delete(rk_resource_set_t rs);

Deletes the CPU reserve associated with a resource set.

� rk_cpu_reserves_get_scheduling_policy(void);

Returns the scheduling policy used to schedule CPU re-
serves. The policy can either be RATE_MONOTONIC or
DEADLINE_MONOTONIC.

� rk_cpu_reserves_set_scheduling_policy(int pol-
icy);

 Sets the scheduling policy used to schedule CPU re-
serves. The policy can either be RATE_MONOTONIC or
DEADLINE_MONOTONIC.

� rk_cpu_reserves_get_num(void);

Returns the number of CPU reserves currently in the
system.

� rk_cpu_reserves_get_list(rk_reserve_t *rsv,
int count);

Returns the list of CPU reserves in the system.

� rk_cpu_reserve_get_attr(rk_reserve_t rsv,
cpu_reserve_attr_t attr);

TimeSys Linux/RT User’s Guide

62

Returns the attributes of the specified CPU reserve rsv
which include the reserve’s computation time (C), pe-
riod (T), deadline (D), blocking time (B, typically 0), and
enforcement mode (hard, or soft).

� sys_inherit(int mode);

Determines whether children created by this process
inherit the resource set of the parent process.

Please consult example programs in
/usr/src/TimeSys/LinuxRK/examples, the utilities in
/usr/src/TimeSys/LinuxRK/bin and the TimeSys Pro-
grammer’s Manual for additional details.

5.1.4 Priority Inheritance Support

You can use priority inheritance on mutexes to bound
problems due to priority inversion in TimeSys Linux/RT.
Due to the original coding of the Posix pthreads library in
Linux, the support for priority inheritance requires the use
of a new library called libpthreads_rt.a. Your applica-
tion program must link with this new library to obtain the
use of priority inheritance. The use of the older library will
not give you the capability to use priority inheritance.

5.1.5 High-Resolution Clocks and Timers

Most, if not all, functions below are compatible with their
IEEE POSIX 1003.1 standard counterparts.

� unsigned long rt_get_clock_frequency(void);

Returns the system processor clock frequency in Hz.

� clock_settime (clockid_t clock_id, __const
struct timespec *tp);

Sets the time-of-day clock specified by to specified
value.

� clock_gettime (clockid_t clock_id, struct
timespec *tp);

Chapter 5: Programming With TimeSys Linux/RT

63

Get the time of day.

� clock_getres (clockid_t clock_id, struct
timespec *res);

 Get the resolution of the specified clock.

� timer_create (clockid_t clock_id, struct
sigevent *evp, timer_t *timerid);

Create a timer with the appropriate sigevent.

� timer_delete (timer_t timerid);

Delete the specified timer.

� timer_settime (timer_t timerid, int flags,
__const struct itimerspec *value, struct
itimerspec *ovalue);

Set timer value (the old timer value is returned).

5.1.6 Periodic Real-Time Threads

� rt_make_periodic(struct timespec *period,
struct timespec *start);

This is NOT persistent across exec and fork system
calls. The calling thread is made periodic with the
specified period parameter and its periodicity will
start at time start.

� rt_wait_for_start_time(void);

This function is called by a periodic task and allows
the task to be delayed until the point in time when its
periodicity starts.

� int rt_wait_for_next_period(void);

This function is called by a periodic task to wait for
its next (possible) period boundary. The task is
blocked until the next boundary.

� int rt_process_get_period(pid_t pid, struct
timespec *period);

This function can be used to obtain the period value
being used by a periodic real-time process.

TimeSys Linux/RT User’s Guide

64

� int rt_process_set_period(pid_t pid, struct
timespec *period);

This function can be used to set the period value be-
ing used by a periodic real-time process.

5.1.7 Physical Memory Management

System calls to support locking and unlocking of memory
pages are available as part of standard Linux.

� mlock(caddr_t addr, size_t len);

Run "man mlock" for more information.

� mlockall(int flags);

The mlockall() function locks in memory all pages
mapped by an address space.

The value of flags determines whether the pages to
be locked are those currently mapped by the address
space, those that will be mapped in the future, or
both:

� MCL_CURRENT: Lock current mappings.

� MCL_FUTURE: Lock future mappings

Locks established with mlockall() are NOT inher-
ited by a child process after a fork() call, and are
NOT nested.

� munlock(caddr_t addr, size_t len);

munlock() removes locks established with mlock().

� munlockall(void)

The munlockall() function removes address space
locks and locks on mappings in the address space.

5.2 Programming in RTAI

This section presents the RTAI program: its structure, envi-
ronment, and unique needs. The most important thing to

Chapter 5: Programming With TimeSys Linux/RT

65

remember is that RTAI programs work at the kernel level.
All of the supporting functions, such as shared memory,
task scheduling (FIFO, LXRT), and the core functionality it-
self (RTAI) are attached to the Linux kernel as modules. The
RTAI root directory contains executable scripts (ldmod, re-
mod) for inserting and removing the core modules. This is
discussed in more depth in the Programmer’s Guide. Since
all execution takes place in the operating system, you will
need either to be logged in as root or to initiate super user
privileges. Remember, working with root privileges creates
the chance for serious damage to your operating system by
accidentally modifying or deleting necessary files. Also,
since the code that you are creating will be attached directly
to the kernel, it is possible to create tasks that will starve the
rest of the system. The only other option after releasing such
a monster on your processor(s) is a cold boot. To para-
phrase Elmer Fudd, “be vewy, vewy, vewy careful.”

For those not initiated in the ways of the module, please re-
fer to the Programmer's Guide for a longer discussion.
There are basically two things to be done with them: insert
and remove. The RTAI programs that you write will be
compiled into executables that are to be inserted as mod-
ules. As mentioned above, depending on the functions that
you use, certain modules included in the RTAI package will
need to be inserted before your module will execute prop-
erly.

RTAI was designed to work with both single and multiple
processors (SMP), including restricting task execution to in-
dividual processors on a multiple processor system (MUP).
It includes functions for creating, timing, and scheduling
tasks, ones for inter-processes communication, remote pro-
cedure calls, collaborating Linux and RTAI threads, and
also maintaining semaphores. One set of functions (rtf_)
creates a real-time FIFO that writes to a device and can be
read by Linux processes using standard input functions. All
the functions and the data structures related to them are
discussed in length in the programmer's manual. RTAI's
purpose is to present the programmer and those who use
the programs with a unified API that can be used for the
spectrum of real-time programming: hard, firm, or soft.

TimeSys Linux/RT User’s Guide

66

RTAI programs, or modules (as they will be referred to
from now on) are written in C. There are a number of func-
tions necessary for each module to work properly. Each
RTAI module needs an init_module and cleanup_module
to work properly. There is no main() in an RTAI program.
The initialization of all the threads and the program’s envi-
ronment is taken care of by the init_function. Without
this function, your module will not run correctly. When the
module is removed from the kernel, the cleanup_module
function takes care of the messy details, such as destroying
the module’s threads and freeing any devices that might
have been utilized by the module.

Most of the work that will be done by your module is in-
cluded in the task functions. They can be included right in
the primary file or could be spread across several files.
Tasks are declared at the top of the primary file and as men-
tioned before, are initialized in the init_module function.
This is where the characteristics of the tasks, such as peri-
odic rate and synchronization, are stated. Task routines are
a very important part of the module — if they didn't exist,
the module would not be able to accomplish anything. This
should provide you with a good idea what comprises an
RTAI program and how it is used. For a more in-depth look
at programming in RTAI, please consult the TimeSys Li-
nux/RT Programmer's Guide.

67

Appendix: Linux and TimeSys Linux/RT
Commands

A. 1 Linux Commands

The following are some of the most common and useful Li-
nux commands. If you need more information about using
Linux, we suggest that you grab one of the many good Li-
nux manuals on the market.

cat [filename] The cat command scrolls
the contents of the file file-
name across the screen.

cd [directory
name]

The cd command changes
the directory you’re in.
There are a variety of differ-
ent parameters that you can
put into directory name:

cd .. Moves you up one direc-
tory.

cd ~ Moves you to your home
directory. You can also
move to your home direc-
tory by putting nothing in
the directory name parame-
ter.

cd name Move you to the name direc-
tory. For more details on
these commands, such as
options and parameters,
please read the man pages
supplied in the Linux distri-

TimeSys Linux/RT User’s Guide

68

bution.

cp [oldfile]
[newfile]

The cp command lets you
copy oldfile to newfile.

dir [directory
name]

The dir command displays
the contents of the directory
directory name. If you leave
directory name blank, it will
display the contents of the
current directory.

echo [string] The echo command prints
the string string to the dis-
play or can be redirected to
a file, device, program, or
your shell.

find [directory
to start search]
[filename] [ac-
tion for list]

The find command
searches the directory direc-
tory to start search. and all
subdirectories, for the file
filename and action for list is
what the command does
with the list.

grep [text]
[file]

The grep command
searches the file file for the
text pattern text and prints
to the screen all of the por-
tions of the file in which text
was found.

insmod [module] The insmod command in-
serts the module module into
the kernel. You must be
logged in as root or have
super-user privileges to use
this command.

less [filename] less is a program which
displays the contents of the
file filename to the screen like

Appendix: Linux and Linux/RT Commands

69

the more program. less
allows you to move back-
wards in the file as opposed
to more, which only allows
you to move forward
through the file.

ls [directory
name]

The ls command lists the
contents of the directory
directory name. You can
change the format of the
printed list via options
which can found in the man
page for ls. If you leave
directory name blank, it will
list the contents of the cur-
rent directory.

lsmod The lsmod command lists all
of the modules that have
been inserted into the sys-
tem.

make make is a utility that finds
out which parts of a large
program need to be recom-
piled and issues the com-
mands needed to do the re-
compilation.

man [subject] The man command formats
the online manual pages for
the subject subject and dis-
plays that information to the
screen. It is very useful be-
cause it gives very detailed
information about com-
mands and other things. It is
advised that you read the
man pages on any of the
commands you look up in
this appendix.

TimeSys Linux/RT User’s Guide

70

mkdir [directory
name]

The command mkdir creates
the directory directory name
in the current directory you
are in, unless you give a full
path name for the directory
name, which will then create
it there.

more [filename] more is a program which
displays the contents of the
file filename to the screen like
the less program. more only
allows you to move forward
in the file as opposed to
less, which allows you to
move in both directions
through the file.

mount [directory
name]

The mount command at-
taches the filesystem to the
directory directory name. If
directory name is left blank,
the command will list all of
the currently mounted file-
systems.

mv [object1]
[object2 or des-
tination loca-
tion]

The mv command moves
object1 into object2 or into the
destination location. In other
words, you can move a file
into another file, or you can
move a file into a directory.

ps The ps command displays a
snapshot of all the current
processes.

pwd The pwd command displays
the path of the current direc-
tory you are in.

rm [filename] The rm command removes
the file filename from the

Appendix: Linux and Linux/RT Commands

71

system. Be very careful with
this command because there
is no way of retrieving the
file once it has been re-
moved.

rmdir [directory
name]

The rmdir command allows
you to remove the empty
directory directory name.
Remember, directory name
must be empty.

rmmod [module] The rmmod command re-
moves the module module
from the kernel. You must
be logged in as root or have
super-user privileges to use
this command.

su The su command allows
you to have superuser
privileges. It will ask you for
a password. When it does,
you must put root’s pass-
word in. It is now like you
logged in as root.

umount [direc-
tory name]

The umount command de-
taches the filesystem from
the directory [directory
name].

A. 2 TimeSys Linux/RT RK Commands

clockfreq Prints the clock frequency at
which the system processor is
running. The units are in
MHz.

RKcleanRS Destroys all resource sets and
their associated reserves in the

TimeSys Linux/RT User’s Guide

72

system.

rkattach <re-
source set in
hex> <process
id> [process
id] …

Attach to the specified re-
source set the list of specified
processes.

rkdestroy < re-
source set in
hex> [resource
set] …

Destroy the specified resource
set(s).

rkdetach <re-
source set in
hex> <process
id> [process
id] …

Detach from the specified re-
source set the list of specified
processes.

rkexec –-
newrset –-cpu
[time in us] –
period [period
in us] –-
deadline [dead-
line in us] –-
hard (or [-–
soft] -–exec
‘<args>’

Execute the specified process
creating a new resource set (or
specify an existing resource set
to use using an –-rset option).
The CPU reservation parame-
ters (CPU time, period and
deadline) can be specified.

rklist List the parameters of the cur-
rent resource sets and their
reservations in the system.

In addition, TimeSys Linux/RT also provides a powerful set of APIs for
providing guaranteed QoS to new and legacy Linux applications (using
its RK subsystems) as well as for high-performance requirements (using
RTAI). These APIs are documented in detail in the TimeSys Linux/RT
Programmer’s Manual.

73

Glossary

The following definitions apply to terms used throughout this
manual. Most terms are derived from the RMA terminology de-
fined in the Handbook of Real-Time Systems4. A clear under-
standing of these terms is expected to be very useful to any user
of Real-Time Systems using TimeSys Linux/RT and associated
tools.

Action The smallest decomposition of a response; a
segment of a response that cannot change
system resource allocation. In RMA terms, an
action must be bound to a (physical) resource
before it is analyzed. An action can also use
zero, one or more logical resources.

Admission
Control

The process of testing a new reserve request
and accepting it, if possible. If the request can
be admitted, a reserve based on the requested

4 “A Practitioner’s Handbook for Real-Time Analysis: Guide to Rate Monotonic
Analysis for Real-Time Systems” from Software Engineering Institute and Carne-
gie-Mellon University by Mark H. Klein, Thomas Ralya, Bill Pollak and Ray
Obenza and is published by Kluwer Academic Publishers.

TimeSys Linux/RT User’s Guide

74

parameters is created.

Aperiodic
event

An event sequence whose arrival pattern is
not periodic.

Average-case
response time

The average case response time of a re-
sponse’s jobs (instances). Also, see Output
Jitter.

Blocking The act of a lower priority task delaying the
execution of a higher priority task; more
commonly known as priority inversion. Such
priority inversion takes more complex forms
in distributed and shared memory implemen-
tations.

Blocking time The delay effect (also called the "duration of
priority inversion") caused to events with
higher priority responses by events with
lower priority responses.

Bursty arrivals An arrival pattern in which events may occur
arbitrarily close to a previous event, but over
an extended period of time the number of
events is restricted by a specific event den-
sity; that is, there is a bound on the number
of events per time interval. Bursty arrivals
are modeled in RMA using their minimum
interarrival time and their resource consump-
tion in that interval.

Data-Sharing
Policy

A policy specific to a (physical) resource that
determines how logical resources bound to
the (physical) resource can be accessed. Some
schemes do not provide any protection
against priority inversion, while others pro-
vide varying degrees of protection. RMA
supports multiple data-sharing policies in-
cluding FIFO (no protection against priority
inversion), priority inheritance protocol, pri-
ority ceiling protocol, highest locker priority
protocol and kernelized monitor (non-
preemptive execution) policies.

Glossary

75

Deadline-
monotonic
scheduling
algorithm

A fixed-priority algorithm in which the high-
est priority is assigned to the task with the
earliest relative delay constraint (deadline)
from each instance of its arrival. The priori-
ties of the remaining tasks are assigned
monotonically (or consistently) in order of
their deadlines. This algorithm and the earli-
est deadline scheduling algorithm are not the
same. In this algorithm, all instances of the
same task have the same priority. In the earli-
est deadline scheduling algorithm, each in-
stance of the same task has a different prior-
ity, equal to the absolute deadline (time) by
which it must be completed. The rate-
monotonic scheduling algorithm and the
deadline-monotonic algorithm are one and
the same when the relative deadline require-
ment and periods are equal (which happens
very often).

Deterministic
System

A system in which it is possible to determine
exactly what is or will be executing on the
processor during system execution, given any
specific time. Determinism is a consequence
of the scheduling policies supporting a group
of processes.

Dynamic-
priority sched-
uling policy

An allocation policy that uses priorities to
decide how to assign a resource. Priorities
change from instance to instance of the same
task (and can also vary during the lifetime of
the same instance of a task). The earliest
deadline scheduling algorithm is an example
of a dynamic priority scheduling policy.

Earliest dead-
line schedul-
ing

A dynamic priority assignment policy in
which the highest priority is assigned to the
task with the most imminent deadline.

Event A change in state arising from a stimulus
within the system or external to the system;
or because of the passage of time. An event is

TimeSys Linux/RT User’s Guide

76

typically caused by an interrupt on an input
port or a timer expiry. See also trace and
trigger.

Execution time Amount of time that an action or a response
will consume on a CPU.

Firm Reserve A reserve that is scheduled for execution on
depletion only if no other undepleted reserve
or unreserved resource uses can be scheduled

Fixed-priority
scheduling
policy

An allocation policy that uses priorities to
decide how to assign a resource. The priority
(normally) remains fixed from instance to
instance of the same task. Rate-monotonic
and deadline-monotonic scheduling policies
are fixed-priority scheduling policies.

Hard Reserve A reserve that will not be scheduled on de-
pletion until they are replenished.

Hardware pri-
ority schedul-
ing policy

An allocation policy in which the priority of a
request for the backplane is determined by a
hardware register on each card that plugs
into the backplane. Presumably, the hard-
ware priority value reflects the importance of
the device that is connected to the adapter.

Highest Locker
Priority

A data-sharing policy in which an action us-
ing a logical resource is executed at the high-
est priority of all actions that use the logical
resource (i.e. at the priority ceiling of the re-
source). This protocol provides a good level
of control over priority inversion.

Input Jitter The deviation in the size of the interval be-
tween the arrival times of a periodic action.

Kernelized
Monitor

A data-sharing policy in which an action us-
ing a logical resource is executed in non-
preemptive fashion (i.e. at kernel priority).
This protocol provides a good level of control
over priority inversion except when one or
more actions using a logical resource has a
long execution time (relative to the timing

Glossary

77

constraints of other higher priority tasks).

Kernel Module Synonymous with Loadable Kernel Module.

Loadable Ker-
nel Module

A software subsystem that can be dynami-
cally made part of the operating system ker-
nel. With TimeSys Linux/RT, the RK and the
RTAI components are provided in this form
allowing the user to dynamically load or un-
load them while the Linux kernel is running.

Logical Re-
source

A system entity that is normally shared
across multiple tasks. A logical resource must
be bound to a physical resource like a proces-
sor, and is modeled in RMA as an action with
a mutual exclusion requirement. Also, see
Data-Sharing Policy.

Output Jitter The deviation in the size of the interval be-
tween the completion times of a periodic ac-
tion.

Period The interarrival interval for a periodic event
sequence. Also, see Input Jitter.

Periodic event An event sequence with constant interarrival
intervals. Described in terms of the period
(the interarrival interval) and a phase value.

Predictable
System

A system in which it is NOT possible to de-
termine exactly what is or will be executing
on the processor during system execution,
given any specific time; however, it is possi-
ble to determine if deadlines associated with
events can or can not be met.

Preemption The act of a higher-priority process taking
control of the processor from a lower-priority
task.

Priority Priority determines the execution characteris-
tics of a thread under TimeSys Linux/RT.
Priority is associated with each action under
RMA, such that varying priorities within an
event response is allowed.

TimeSys Linux/RT User’s Guide

78

Priority Ceiling This is associated with each logical resource
and corresponds to the priority of the highest
priority action that uses the logical resource.

Priority Ceiling
Protocol

A data-sharing policy in which an action us-
ing a logical resource can start only if its pri-
ority is higher than the priority ceilings of all
logical resources locked by other responses.
This protocol provides a good level of control
over priority inversion.

Priority Inheri-
tance Protocol

A data-sharing policy in which an action us-
ing a logical resource executes at the highest
of its own priority or the highest priority of
any action waiting to use this resource. This
protocol provides an acceptable level of con-
trol over priority inversion.

Priority Inver-
sion

This is said to occur when a higher priority
action is forced to wait for the execution of a
lower priority action. This is typically caused
by the use of logical resources, which must be
accessed mutually exclusively by different
actions. Uncontrolled priority inversion can
lead to timing constraints being violated at
relatively low levels of resource utilization.
Also see Blocking and Blocking Time.

Priority Levels The number of distinct priorities available
from the operating system.

Process A collection of schedulable units of process-
ing in the RK component of TimeSys Li-
nux/RT, composed of one or more Threads.

Process Clone Synonymous with Thread under TimeSys
Linux/RT.

Rate-
monotonic
scheduling
algorithm

Algorithm in which highest priority is as-
signed to the task with the highest rate (in
other words, with the shortest period) and
the priorities of the remaining tasks are as-
signed monotonically (or consistently) in or-
der of their rates.

Glossary

79

Rate-
monotonic
scheduling

A special case of fixed-priority scheduling
that uses the rate of a periodic task as the ba-
sis for assigning priorities to periodic tasks.
Tasks with higher rates are assigned higher
priorities.

Real-time sys-
tem

A system that controls an environment by
receiving data, processing it, and taking ac-
tion or returning results quickly enough to
affect the functioning of the environment at
that time.A system in which the definition of
system correctness includes at least one re-
quirement to respond to an event with a time
limitation.

Reserve Represents a share of a single computing re-
source. Such a resource can be CPU time,
physical memory pages, a network band-
width, or a disk bandwidth.

Resource A physical entity such as a processor, a back-
plane bus, a network link or a network router
which can be used by one or more actions. A
resource may have a resource allocation pol-
icy (such as rate-monotonic scheduling) and a
data-sharing policy.

Resource Set Represents a set of reserves. A resource set is
bound to one or more programs, and pro-
vides the exclusive use of its reserved
amount of resources with those programs. A
resource set groups necessary resources for
the job of user applications; thus, it is easy to
examine and compare the utilization of each
resource in it.

Resource Ker-
nel (RK)

A resource kernel is one which provides
timely, guaranteed, and enforced access to
system resources to applications.

Response A time-ordered sequence of events arising
from the same stimulus. In RMA, an event
can trigger one or more actions to be exe-

TimeSys Linux/RT User’s Guide

80

cuted.

Responses Multiple time-ordered sequences of events,
each arising from a distinct event. Event se-
quences that result in responses on the same
resource often cause resource contention that
must be managed through a resource alloca-
tion policy.

Soft Reserve A reserve, that can be scheduled for execu-
tion on depletion along with other unre-
served resource use and depleted reserva-
tions.

System Event An Operating System generated event that is
reported externally and can be monitored
and visualized through TimeTrace, an Inte-
grated Measurement and Visualization Envi-
ronment from TimeSys.

Task A schedulable unit of processing in the RTAI
component of TimeSys Linux/RT, composed
of one or more actions.

Thread A schedulable unit of processing in the RK
component of TimeSys Linux/RT composed
of one or more actions. Synonymous with
Process Clones.

TimeTrace An Integrated Measurement and Visualiza-
tion Environment from TimeSys that allows
the visualization and reporting of fine-
grained information in real-time systems.

TimeWiz An Integrated Design Environment from
TimeSys, that allows design, timing analysis
and simulation of real-time Systems.

Tracer A stimulus. Synonymous with a single in-
stance of an "Event" within RMA, and is used
to represent an end-to-end data flow se-
quence spanning multiple physical resources.
An end-to-end timing constraint is normally
associated with a tracer event. TimeWiz, an
Integrated Design Environment for Real-

Glossary

81

Time Systems from TimeSys, computes both
worst-case and average-case response times
to a tracer using analysis and simulation re-
spectively. Also see Trigger.

Trigger A stimulus with an arrival pattern. Mostly
synonymous with the term "Event" within
RMA but is used to name an event whose
response consists of a chain of actions exe-
cuting on at most a single resource. In RMA,
a trigger is bound to a (physical) resource
when one or more actions in its correspond-
ing response are bound to a (physical) re-
source. Also see Tracer.

User Event An application generated event that is re-
ported externally and can be monitored and
visualized through TimeTrace, an Integrated
Measurement and Visualization Environment
from TimeSys.

Utilization The ratio of a response’s usage to its period,
usually expressed as a percentage. For a CPU
resource, this is execution time divided by
period.

Worst-case re-
sponse time

The maximum possible response time of a
response’s jobs (instances). Also, see Output
Jitter.

83

Index

A

accounting for reserves, 35
admission control, 34

C

callback hooks, 31
Carnegie Mellon University, 29
clocks and timers, high-

resolution, 25, 29, 62
CPU reservations, 59

D

Debian, 11
installation, 15

DIAPM, 12

E

enforcement of reserves, 35

F

fine-grained control, 25
firm reserves, 34
fixed-priority scheduling, 24, 28,

57

H

hard reserves, 34

J

Java Virtual Machine, 22

L

legacy applications, 46
Linux, 9

history, 10
Linux Loadable Kernel Module

(LKM), 24
Linux/RK, 12

capabilities of, 57
loadable kernel modules

(LKMs), 27

M

Mandrake, 15, 16
memory wiring, 58
Minix, 10
modules, 18

loading, 19
unloading, 20

multiple processors (MUP), 65
mutex, 62

O

open source, 10
open-source executive, 26

P

periodic real-time tasks, 29, 58

TimeSys Linux/RT User’s Guide

84

periodic real-time threads, 63
periodic threads, 25
physical memory management,

64
priority inheritance, 25, 28, 58,

62

Q

quality of service (QoS), 29, 58

R

Rajkumar, Raj, 29
rate monotonic analysis, 24
Real-Time Applications

Interface (RTAI), 12, 26
background, 36
programming in, 65

Real-Time Hardware
Abstraction Layer (RT-HAL),
36

RED Linux, 12, 25
RedHat, 15, 16
reserves, 32
resource kernel, 24, 28, 29, 30
resource reservation, 29
resource set, 32, 35
rolling demo utility, 47

S

scheduling policy, 35
single processors (SMP), 65
soft reserves, 34

SuiteTime, 22
Suse, 15, 16

T

temporal firewall, 24
timestamp counter, 35
TimeSys Linux/RT

application programming
interfaces (APIs) of, 57,
59

architecture of, 23
implementation of, 35
installation, 15
mascot of, 21
theory behind, 21

TimeSys Resource Manager
(TRM), 51

TimeTrace, 22, 42
TimeWiz, 22, 40
Torvalds, Linus, 10
Tux the penguin, 21

U

unbounded priority inversion, 58
University of California at

Irvine, 12
user programs

RTAI, 46, 55

V

video-conferencing, 55

85

